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1

THE TRANSISTOR

1.1 Intrinsic semiconductors

It is well known that certain materials conduct electricity with
little resistance whereas others are good insulators. There also exist
materials whose resistivity is between that of good conductors and
insulators, and is strongly dependent on temperature; these materials are
called semiconductors. Silicon (Si), germanium {Ge) and compounds such
as gallium arsenide (GaAs) are semiconductors, silicon being by far the
most widely used material. Solids, in general, are crystalline and their
electrical properties are determined by the atomic structure of the overall
crystal. This can be understood by analogy to the energy levels of a free
atom.

A free atom, for instance the hydrogen atom, exhibits discrete energy
levels which can be exactly calculated. A schematic representation of such
an energy diagram is shown in Fig. 1.1(a). If two hydrogen atoms are
coupled, as in the hydrogen molecule, the number of energy levels doubles
as shown in part (b) of the figure. If the number of atoms that are coupled
to each other is very large — as is the case for a crystal — the energy levels
coalesce into energy bands as in Fig. 1.1(c). The electrons in the crystal
can only have energies lying in these bands.

When an atom is not excited the electrons occupy the lowest possible
energy levels. In accordance with the Pauli principle only two electrons
(one with spin projection up and the other down) can be found at any
one particular energy level. Thus the levels — or states — become
progressively filled from the bottom. The same holds true in the crystal.
The electrons progressively fill the energy levels within a given band, and
only when the band is completely filled do they begin to populate the
next band. The energies of the electrons are typically few electron-Volts
(eV).



4 The transistor

In an insulator the occupied energy bands are completely filled. As a
result the electrons cannot move through the crystal. This is because
motion implies slightly increased energy for the electrons but the next
available energy level is in the conduction band which is far removed
from the valence band. Thus the electron must acquire enough energy to
overcome the energy gap between the valence band and the conduction
band as shown in Fig. 1.2(a). In a conductor the valence and conduction
bands overlap and the outermost electron of the atom is free to move
through the lattice (Fig. 1.2(c)). In a semiconductor the energy gap is
much smaller than for insulators and due to thermal motion electrons
have a finite probability of finding themselves in the conduction band.

Fig. 1.1. Energy levels of an atomic system: (a) single atom, (b) two
coupled atoms, (¢} in a many-atom system the energy levels coalesce
into energy ‘bands’.

)

(@) (b) (¢)

Fig. 1.2. Energy band structure for: (a) an insulator such as SiO,, (b) a
semiconductor, such as Ge, (c¢) a good conductor such as Al
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Intrinsic semiconductors 5

Furthermore when an electron makes a transition from the valence to the
conduction band it leaves a vacancy in the valence band. This vacancy
can move through the lattice (just as a bubble ‘moves’ through a liquid)
and contribute to the flow of current; we speak of transport of electric
charge by the motion of holes (Fig. 1.2(b)).

To obtain a feeling for the occupancy of the energy levels in a solid we
can consider the following simple model for a conductor. We assume that
one electron in each atom is so loosely bound that it is practically free
inside the crystal. This is the case for copper which has Z =29, and thus
every atom has 29 electrons. Of these, 28 electrons completely fill the n = 1
(2 electrons), n =2 (8 electrons) and n=3 (18 electrons) shells, leaving
one electron outside the closed shells. Such an electron is loosely bound
to the atom and in fact it occupies a level in the conduction band; thus
it can move freely through the crystal. It is simple to calculate the density
of free electrons in copper. We have Z =29, A ~63, p=8.9 g/cm?® and
assume one free electron per atom; then

" _No (atoms) y p<i> _6x 10?3 89 -8.5 x 1022 electrons
A g cm? 63 cm?

(1.1)

where N, =6 x 10?3 is Avogadro’s number.

The free electrons in a metal can be described approximately as particles
confined within a cubic box but with no other forces acting on them. This
situation is depicted for one dimension in Fig. 1.3 and we speak of a
‘potential well’ of length 2L. In this case the solution of Schrédinger’s
equation leads to wave functions of the form

Yu(x) = (1/i/L) cos(k,x)  or  (1/i/L)sin(k,x)

Fig. 1.3. The wave function for the lowest and next to lowest energy
states of a particle confined to the region —L < x < L by an infinitely
high potential.

U




6 The transistor

where the wave number k, can take only the discrete values

k=n—  n=1,2,3,... (12
2L
so as to satisfy the boundary conditions ¥(—L)=y{(L)=0. Thus the
allowed energies of the particles in the potential well are quantized and
given by
2 hzkz hz 2
P P T (1.3)
2m  2m  8ml?
If we generalize to three dimensions, we must use three quantum numbers,
n,, n, and n, and the energy is given by

n

#n?
" 8mI2

Every particular combination of n,, n, n, represents a different energy
level and only two electrons can occupy it. Note that several energy levels
(different combinations of n,, n, n,) can have the same energy; we say
that these levels are degenerate.

We can use Eq. (1.3") to calculate the energy of the highest filled level
given the density of free electrons n, in the crystal. This level is called the
Fermi level and its energy is the Fermi energy for the system. It is given by

2

E.= ;_m (3n2n,)*? (1.4)

E

(n2+n+n?) nen,n,=1,2,3,... (1.3)

n

where m is the mass of the electron. For Cu we use the result of Eq. (1.1)and
hic=2x 107 eV-cm
mc? =0.5 x 10 eV

to find Ex=7.1¢V, in good agreement with observation. To see how
Eq. (1.4) is derived we must count the number of (n,, n,, n,) combinations
available when the maximal value of (n+nl+n?) is specified. In
Fig. 1.4 every combination of (n,, n,n,) is indicated by a dot in
3-dimensional space. When n,,n,n, are large, a given value of
(n2 + n} + n2)"'? = constant defines the surface of a sphere in this space;
all levels on the surface of the sphere have the same energy. The number
of levels inside the sphere equals its volume, because the dots are spaced
one unit apart from one another. Since n,, n, n, must be positive the
number of combinations N, is given by the volume of one octant

¥
Ne=3(GrR%) = [(n 415 + 1 )nar ]

Because of the Pauli principle the number of electrons occupying the N,
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levels is N, = 2N,. Thus the energy of the highest occupied level is
2.2

YA
Emax =53 n)zc + n2 + nf max
8mI? ( Y )
h2 2 3 2/3 h2 N 2/3
=2 ( Ne> - [3n2 J (1.4)
8mI? \n 2m 83

Note that the N, electrons are confined in a volume of size V = (2L)* and
therefore in Eq. (1.4') (N,/83) = n, is the free electron density establishing
the result of Eq. (1.4).

Let us now return to the free electron model. In the absence of
excitations, that is at very low temperature, only the levels below the
Fermi energy, Er will be occupied. Let f(E) indicate the probability that
a level at energy E is occupied; clearly f(E) is bounded between 0 and 1.
If we plot f(E) as a function of E for T =0 it must have the square form
indicated by curve 4 in Fig. 1.5. As the temperature increases some of
the levels above Eg will become occasionally occupied, and correspondingly
some levels below Ep will be empty. The probability of occupancy, f(E)
for a finite temperature T, # 0 is indicated by curve B in Fig. 1.5. The

Fig. 1.4. Counting the number of states labeled by the integers n,, n,
and n_such that (n + n? + n?) < R*. Each state is represented by a dot.

Fig. 1.5. The Fermi distribution function for zero temperature (4) and
for finite temperature (B); Er is the Fermi energy.

FE| @
T=0
/

1 \

Eg

T,#0

=Y
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function f(E) is known as the Fermi function and is given by

1

FE)= g (1.5)

In the limit T — 0 Eq. (1.5) reduces to f(E)=1if E<Egorto f(E)=0
if E > Eg in agreement with curve 4 of Fig. 1.5.
For finite T, consider an energy level E, lying above Ey; we define
e=(E,— Eg). As long as ¢ 2 3kT Eq. (1.5) can be approximated by
fle)e T (1.6)
For a level E; lying below Ep we define & = (Ex— E;). We are now
interested in the probability that the level E; is empty, namely in
f'(e)Y=1—f(¢'). Aslongas ¢’ = 3kT a valid approximation to Eq. (1.5} is
1
N =1 a—gkT /
I1—f(eH)=1 e e (1.6")
Eqgs. (1.6) show that at finite temperature there are as many occupied
states above the Fermi level as there are empty states below it. This result
can serve as a rigorous definition of the Fermi level. Finally we note that
the expansions of Egs. (1.6, 6') coincide with the classical Boltzmann
distribution.
To get a better feeling for the implications of the Fermi function on the
distribution of carriers in a semiconductor we first calculate kT at room
temperature. Boltzmann’s constant

k=138x10"22J/K

and if we take
T=300K
kT=4.1x10"21J=0.026 ¢V

The energy gap for an insulator is of order AE~ 5eV whereas for
semiconductors it is E,~1eV. Thus for semiconductors at room
temperature a small fraction of the electrons in the valence band can be
thermally excited into the conduction band.

For a pure semiconductor we designate the number density of (intrinsic)
electrons in the conduction band by n;. For an intrinsic semiconductor
the density of holes will also equal n; and therefore the Fermi level will
lie in the middle of the energy gap as shown in Fig. 1.2(b). The intrinsic
carrier density is then given by the probability of occupancy f{e) multiplied
by N, the number of available states per unit volume. Using Eq. (1.6) we
find

n, = N,e ™ 5e/2+T (1.7)

(N, is an effective density of states near the band edge and for silicon it
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is of order ~10'° cm™3). In general n; is much smaller than the free
electron density in a good conductor. For instance, for silicon where
E =1.1¢V, at room temperature n; ~ 10'® cm ~ 2, whereas for germanium
(E,=0.7¢V),n;~10'> cm™ 3. This should be compared to the free electron
density in copper which we calculated to be n; ~ 10?3 cm~3. Of course
the crystal as a whole remains electrically neutral, but if an electric field
is applied the carriers will be set in motion and this will lead to the
transport of charge. It is evident from Eq. (1.7) that the conductivity of
a pure semiconductor will be highly temperature dependent.

1.2 Doped semiconductors

We saw in the previous section that the intrinsic carrier densities
are quite small. Thus, unless a semiconductor is free of impurities to a
high degree, the phenomena associated with the motion of the intrinsic
carriers will not be manifest. On the other hand, by introducing a particular
impurity into the semiconductor one can greatly enhance the number of
carriers of one or of the other kind (i.e. of electrons or of holes). The great
technical advances in selectively and accurately controlling the
concentration of impurities in silicon have made possible the development
of microelectronics. We speak of doped semiconductors.
To understand the effect of doping we note that the electronic structure
of Si or Ge is such as to have four electrons outside closed shells; they
are elements of chemicals valence 4.

Filled shells Valence
Si Z=14 A~28 n=1,n=2), (3s), (3p),
Ge Z=32 A~T72 (n=1,n=2,n=3)4 4s), (4p),

If one examines the periodic table in the vicinity of Si and Ge, one finds
the valence 3 elements boron (B, Z = 5), aluminum (Al, Z = 13) or indium
(In, Z = 49). On the other side are valence 5 elements such as phosphorus
(P, Z =15), arsenic (As, Z =33) or antimony (Sb, Z =51). What will
happen if impurities from these elements are introduced into pure silicon?

If valence 5 elements are introduced into the silicon lattice the extra
electron will be loosely bound and can be easily excited into the conduction
band. We say that these elements are donor impurities. If valence 3 elements
are introduced they will have an affinity for attracting an electron from
the lattice, creating a vacancy or hole in the valence band. We say that
valence 3 elements are acceptor impurities.

Because of their different electronic structure as compared to that of
the crystal lattice, the donor levels are situated just below the conduction
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band, as shown in Fig. 1.6(a). The acceptor levels are instead located
slightly above the valence band (Fig. 1.6(b)). This energy difference is so
small that at room temperature the impurity levels are almost completely
ionized. Thus in the case of donor impurities the charge carriers are
electrons and we speak of an n-type semiconductor whereas for acceptor
impurities the carriers are the holes and we speak of a p-type
semiconductor. Recall that the crystal is always electrically neutral and
that the charge of the carriers is compensated by the (opposite) charge
of the ionized impurity atoms, the ions however, remain at fixed positions
in the lattice.

In the presence of impurities the position of the Fermi level is determined
by the concentration of the impurities and moves toward the conduction
band if the dominant free carriers are electrons, toward the valence band
if the dominant free carriers are holes. This is sketched in Fig. 1.6. The
position of the donor level is indicated by the plus signs in Fig. 1.6(a),
of the acceptor level by the minus signs in (b) of the figure.

As an example we consider an n-type semiconductor, and as usual,
designate the (extrinsic) conduction electron density by n, and the hole
density by p. Then according to Egs. (1.6, 6)

n=N,e & EF)/kT} (18)
p= Nve—(EF—EV)/kT
Here we introduced a new concept, the effective density of states N. This
is the number of available energy states per unit volume, the subscripts
¢ and v referring to the condition and valence band correspondingly. In
general N, and N, need not be equal to one another.
Similar relations hold for the intrinsic carriers except that we designate

Fig. 1.6. Energy band diagram for doped semiconductors. Dots
represent electrons and open circles holes: (a) for an n-type
semiconductor (note the position of the donor level), (b) for a p-type
semiconductor (note the position of the acceptor level).

e /.-‘..J.h./o(o‘o‘szo/ — Edge of conduction ~ // // // // // // // // / // /

band
DR S S e
FTETEEHTE S Jonized donors
Epm e e e
E lonized
fFm— == —==- /acceptors
Edge of valence ~_ = _—= = = = = =~
7T 7777 -~ band T~ 7676767576707
0 O 0 00 0

(a) n-type (b) p-type
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the corresponding Fermi level by E;, and n; must equal p;. Thus

n,= N,e EENT — p — N g~ E~EIkT (1.9)
This relationship can be solved to yield the exact value of E;
E;=3%(E.+ E,)+ 3kT1n(N,/N,) (1.9

as well as a convenient expression for n,
n, = (NVNC)I/ZC—(EC—EV)/ZI‘T (19//)

Finally we can multiply the two Eqgs. (1.8) with one another
np = Nche—(Ec—Ev)/kT

and by comparing with Eq. (1.9”) obtain the very important relation
np = n? (1.10)

The product of the electron and hole densities is independent of the doping
and depends on the intrinsic properties of the semiconductor and the
temperature. This is true under equilibrium conditions and provided the
intrinsic carriers are not highly excited.

In a doped semiconductor we have majority and minority carriers. For
instance in an n-type semiconductor the electrons are the majority carriers
and the holes the minority carriers; the opposite is of course true for p-type
semiconductors. The density of ionized donors and acceptors is designated
by N, and N, respectively. Then if the electrons are the majority carriers
it holds

Np>» N, and n~ Np
We can obtain more accurate relations by taking into account the

electrical neutrality of the crystal. The charge density p must equal zero
and therefore

p=q(p—n+Np—Ny)=0 (1.11)
Solving Eq. (1.11) for p and inserting the result in Eq. (1.10) we obtain
a quadratic equation for n, whose solution is

n=3(Np— Na) £ 3[(Np — Ny)* + 4n?]/?
For an n-type semiconductor, where (N, — N,)>0 we must keep the
solution with the positive radical. And if (N; — N,) > n; we have
n,=(Np— Na)~ Np

nt nf
(ND - NA) ND

where the subscript indicates the type of semiconductor. For instance, n,
or p, are majority carrier concentrations. Similar relations are valid for

p-type semiconductors.

(1.12)
Pn=
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Thus we see that by the controlled introduction of impurities we can
create materials with a particular type of majority carriers. It is the junction
of two or more such materials that makes possible the control and
amplification of electric current by solid state devices.

1.3 Charge transport in solids

One is familiar with the notion of an electric current ‘flowing’
through a wire. What we are referring to is the transport of electric charges
through the wire, and this in turn is a consequence of the motion of the
carriers in the wire. In a good conductor the carriers are electrons, while
in a gas discharge or in a liquid the carriers are both electrons and positive
ions. In a semiconductor the carriers are electrons, or holes, or both,
depending on the material. The current at a point x along the conductor
is, defined as the amount of charge crossing that point in unit time
I =AQ/At. Tt is more convenient to use the current density J which is the
amount of charge crossing unit area (normal to the direction of J) per
unit time. By definition then

J =qnv, (1.13)
Here q is the charge of the electron (carrier), n is the carrier density, and
vy is the drift velocity of the carriers.

The carriers in a solid are in continuous motion because of their
thermal energy. This motion is completely random as the carriers scatter
from the lattice and it does not contribute to ner transport of charge.
Thus to transport charge a drift velocity must be superimposed on the
random motion. This can be achieved by applying an external electric
field. The motion is then modified as shown schematically in
Figs. 1.7{(a), (b). (We have assumed that the carriers are electrons so their

Fig. 1.7. Idealized motion of free electrons in a metal: (a) in the absence
of an external electric field, (b) in the presence of an external electric
field a net drift current is established.

&

——

CNet displacement
(a) (b)
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motion is opposite to the direction of &.) Another cause for net carrier
motion is the presence of density gradients. The carriers will then move
so as to equalize the density and we speak of diffusion. Finally, carriers
can be lost by recombination with impurities, or conversely, they can be
created by photo-ionization or thermal excitation.

We first examine the motion of carriers under the influence of an electric
field &. The acceleration of a charged particle will be a = F/m = g&/m*
where we have replaced the mass, m, of the particle by an effective mass
m* because the carriers do not move in free space but in the lattice. If
the time between collisions is f,,;, then the average or drift velocity in the
direction of the electric field will be

t
Va=3alou=4q 2:;1 & (1.14)

Namely, the drift velocity is proportional to the electric field &. This is a
very general result and the proportionality coefficient is called the mobility
u. Thus

S (1.14))

From Eqgs. (1.14, 14') we can express the current density as
J=qgnué& (1.15)
This result is equivalent to Ohm’s law which states that the current density
is proportional to the electric field and is related to it by the conductivity o
J=0& (1.159)
Thus
o =qnu (1.16)

Conductivity has dimensions of (ohm~!m™!) and has been recently
defined as the ‘siemens’. When both types of carriers contribute to the
transport of charge, Eq. (1.16) must be modified to read

o =q(npu_ +pps) (1.16)

The inverse of the conductivity is the resistivity, p, and the resistance of
a conductor of cross sectional area A and length L is given by

R=p =-— (1.16")

We can evaluate the mobility if we knew the time between collisions
t.on- Instead, it is convenient to introduce the mean free path (m.f.p.), /,
between collisions. Then, t ., =I/v,,, where v, is the velocity due to
thermal motion. We can write

¥ () = 3T
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and therefore v, = (3kT/m*)'/2, so that from Eq. (1.14)

__ 4

2(3kTm*)'/2
Thus the mobility is a property of the crystal and depends on the
temperature. As the electric field is increased the drift velocity increases
and reaches a saturation value v,. Typical values for negative carriers in
silicon are

p~102cm?/V-s  v,~ 107 cm/s
In general, the mobility of the positive carriers is much smaller than that
of the negative carriers.

When density gradients are present in the solid, the carriers will diffuse
from regions of high concentration to those of lower concentration. The
flux of carriers is proportional to the density gradient. In one dimension
we have

u

d
F#=-p (1.17)
dx
where D is the diffusion coefficient. We can expect that the diffusion
coefficient is related to the mobility of the carriers, and this relationship

was first established by Einstein. One finds that

kT
D=—nuyu (1.17)
q
Therefore the current due to diffusion is given by
d
J,=— ,ukT(—n) (1.17")
dx

a result that should be compared to Eq. (1.15).

In addition to the drift and diffusion currents, carriers may be being
lost due to recombination. Recombination often takes place at traps,
which are locations in the crystal where a hole is trapped near the
conduction band. In many semiconductors, under the influence of light
or other radiation, an electron can become excited from the valence to
the conduction band, increasing the density of carriers; thus a
photocurrent can flow through the circuit if it is suitably biased.

14 The p-n junction

So far we have considered current flow in semiconductors which
were uniformly doped to make n-type or p-type material. If two such
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semiconductor materials of different type are joined the current flow
through the junction depends on the polarity of the external bias. The
technology for making p—n junctions is an important development which
we discuss later. For the analysis of the junction it is sufficient to use a
one-dimensional approximation as shown in Fig. 1.8. We assume that for
the p-type material (to the left of the junction) the ionized acceptor density
is N,, while for the n-type material the ionized donor density is N, and
that N, > Np; this is shown in Fig. 1.8(a). In the idealized case the
distribution of positive carriers follows the impurity distribution and
would be as in Fig. 1.8(b), where the numbers in brackets are typical

Fig. 1.8. Carrier density distribution in the immediate vicinity of a p—n
semiconductor junction: (a) donor and acceptor densities define a step
junction, (b) positive and (c¢) negative carrier densities for the idealized
case, (d) and (e) represent the realistic equilibrium distribution of carrier
densities. Values in brackets are typical concentrations per cm*

Np = Nu|
Np
- X (a)
Na
N | nl
b= Ma n, = Np
i6 I
[10%°] [1015]
b~ L nt
n ND np NA
[105] _[104]
(b) (©)
P nk
\\ P
\ /
\ //
\ /
—t
i -

(d) (e)
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values. To the left of the junction the holes are the majority carriers while
they are minority carriers to the right of the junction; the converse is true
for the negative carriers as indicated in Fig. 1.8(c). For silicon at room
temperature n; = 10'°, so we assume that np = n? = 102°,

The idealized distributions shown in Figs. 1.8(b), (¢) are modified in
practice because the majority carriers diffuse across the junction. As the
holes move into the n-type material they very quickly recombine with the
free electrons and this results in a reduction of the majority carriers to the
right of the junction; similarly, as the electrons diffuse into the p-type
material recombination takes place reducing the majority carriers to the
left of the junction. Thus the carrier distribution has the form shown in
(d), (e) of Fig. 1.8; a finite depletion zone is created in the vicinity of the
junction.

Following the above discussion we sketch our model junction as in
Fig. 1.9(a) where we indicate the holes by open circles and the electrons
by dots; the junction is at x = 0 and the boundaries of the depletion region
are labeled by —x, and x,. For x <0 there exists an excess of ionized
acceptors, that is an ‘excess of negative charge. For x > 0 there exists an
excess of ionized donors, that is an excess of positive charge. Thus the

Fig. 1.9. The electrostatic parameters in the vicinity of a junction:
(a) definition of the depletion region, (b) electric charge density, (c) electric
field, (d) electrical potential.

T .
°©59 © | o . :::o o
ofP)° © | o o |* * (a)
o (o) Ie) Ld 8
o o ol [} hd | © o%e® o
+ t X
p(x) “p n

(b)
& (x)

()

Vix)

i
—— — - ()
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charge density p(x) is distributed as shown in Fig. 1.9(b). A non-zero
charge distribution gives rise to an electric field, which in its simplest
form, is directed from the positive to the negative charge. Thus the field
is negative and as shown in Fig. 1.9(c). Finally by integrating the electric
field we can find the potential in the vicinity of the junction; this is indicated
in (d) of the figure.

Clearly, the electric field ‘pushes’ the electrons towards positive x, and
the holes toward negative x; that is, against the direction in which the
carriers tend to diffuse. The electric field can be calculated by integrating
Gauss’ law

<§=K1 Jx p(x)dx (1.18)

s€0J-w

Here K, is the dielectric constant of silicon; K, ~11.8. In our example
peak field is reached at x =0 and &(x =0) is negative. Similarly, the
potential Mx) is given by integrating the electric field

V(x)= —r &(x) dx (1.18)

— 0
The difference in potential across the junction is designated by V;,; (where
bi stands for ‘built-in’) as shown in Fig. 1.9(d).

We can evaluate ¥;; by noting that under equilibrium conditions both
the electron current and the hole current across the junction must be zero.
The total current is the sum of the drift current J,, and the diffusion
current Jy,. Looking at the current we have, using Eqgs. (1.15, 1.17")

dn
Jaem + Jopm = qnpué — pkT —— =0
dx

or

+eo KT (**dn kT
V,,FJ &dx = l’=1n<L‘°>
o qJ-amn g \n

- 0

The electron densities at large positive x and large negative x can be taken
as n, = Np and n_, =n}/N, so that

kT [NpN,
Vbi=ln|: DZA] (1.18")
q n;

For the densities used in Fig. 1.8 we find V,; =0.65 eV which is typical
of most commercial junctions. The typical thickness of the depletion region
is of the order of 1 micron (1076 m) or less.

A most convenient way for looking at the potentials and the carrier
motion at a junction is to consider the energy band diagram. This is
shown in Fig. 1.10. As we recall the position of the Fermi level with respect
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to the edge of the valence or the conduction band is different for p-type
and n-type materials (see Fig. 1.6). However when the two materials are
joined, the Fermi levels must be at the same energy when the system is in
equilibrium; otherwise there would be flow of charge until the Fermi levels
equalized.* Thus the band diagram takes the form shown in Fig. 1.10,
the relative displacement of the bands being given by g¥;;; (here negative
potential is toward the top of the page in contrast to Fig. 1.9). The
importance of this diagram is that the electrons must gain energy to move
upwards, thus their motion from the n-region to the p-region is impeded.
Similarly the holes must gain energy to move downwards (uphill for the
holes is down), thus their motion from the p-region to the n-region is
impeded. The depletion region is characterized by the sloping part of the
band edges and in fact the electric field is proportional to that slope.
When an external voltage is applied between the ends of the p-type and
n-type material, the potential difference will appear across the junction
and modify the energy diagram by displacing the relative position of the
Fermi levels. We say that the junction is biased. There are two possibilities:
if a positive voltage is applied to the n-type material the potential difference
across the junction will increase and there can be no current flow across
the junction as shown in Fig. 1.11(a). The junction is reverse biased. If

Fig. 1.10. Energy band diagram for a p-n junction; at thermal
equilibrium the Fermi level must be at the same energy in both parts of the
junction.
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* As an analogy one can think of two containers of fluid which are filled to different
heights; when the containers are put in communication the water will flow until the levels
equalize.
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the negative voltage is applied to the n-type material the potential across
the junction is reduced and there is flow of electrons toward the left end
of holes toward the right. When the carriers cross the junction they
recombine but the flow is sustained because the potential drives the
majority carriers on both sides toward the junction. In this configuration
the diode is forward biased, as shown in Fig. 1.11(b). In the case of a
forward biased junction there are enough carriers lying sufficiently high
in the conduction band to have energyE’ > E; these carriers drift across
the junction under the influence of the external potential. As can be
deduced from Eq. (1.18") for a typical n—p junction a bias of 0.5-1.0 volt
1s sufficient to reach saturation. We remind the reader that the current is
carried by the majority carriers in each part of the bulk material, i.e. by
holes in the p-region and by electrons in the n-region.

The simple p—n junction such as described here forms a very useful
device widely used in electrical circuits. It is referred to as a diode and
represented by the symbol shown in Fig. 1.12(a). For positive voltage the
junction is forward biased and the current flow grows exponentially until
it reaches saturation. The current v. voltage (I-V) characteristic of a
typical diode is shown in Fig. 1.12(b); the non-linear nature of the diode
is clearly exhibited. The I-V curve can be described analytically by an

Fig. 1.11. Energy band diagram for a biased p-—n junction: (a) reverse
bias, (b) forward bias. The physical connection to the voltage source is
indicated in the sketches.
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Fig. 1.12. A p—n junction forms a diode: (a) circuit symbol, (b) I-V

characteristic.
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equation of the form
I=1,(e?*" —1)

where V is the biasing voltage.

| I The junction transistor

The junction transistor consists of two p—n junctions connected
back to back with the common region between the two junctions made
very thin. A model of the n—p-n transistor is shown in Fig. 1.13. Note
that one junction is forward biased at a relatively low voltage, whereas
the other junction is reverse biased at a considerable voltage. The three
distinct regions of differently doped material are labeled emitter, base and
collector respectively.

According to the biasing shown in the figure, electrons will flow from
the emitter into the base; one would expect a large positive current Iy

Fig. 1.13. A n—p-—n transistor consists of two back to back diode
junctions. The biasing scheme and current flow are indicated.
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from the base to the emitter. If however the base is thin enough, the
clectrons injected into the base will reach the base—collector junction
before recombining or diffusing in the base. Once electrons cross the
base—collector junction they can move freely in the collector since they
are majority carriers. Furthermore, the base—collector voltage difference
is large so that the electrons gain much more energy than they lost in
overcoming the voltage difference between the collector and base. Such
a system can provide power amplification. Thus Iy is a small current,
while Iy and I are much larger when the transistor is in the conducting
state.

The energy band diagram for the n—p—n transistor is shown in Fig. 1.14.
The majority carriers are electrons and therefore once they reach the
collector they fall through the potential hill. The small voltage between
base and emitter can be used to control the flow of current across the
much Jarger base—collector voltage. For the device to operate in this
fashion the electrons injected from the emitter must traverse the junction
without attenuation. In a good transistor ~0.95 to 0.99 of the injected
carriers traverse the base. Typical widths for the base are of order
W ~ 1-5 um. The emitter is heavily doped with donors so as to be able
to provide the necessary current even with small base emitter bias. Junction
transistors are referred to also as ‘bipolar’ transistors to distinguish them
from field effect devices.

The symbols for a transistor are shown in Fig. 1.15. The arrows indicate
the direction of positive current flow so that on the left of the figure we
recognize an n—p-n transistor (as in Fig. 1.13) and a p-n—p transistor on

Fig. 1.14. Energy band diagram for a biased n—p-n transistor. For
electrons, positive energy is toward the top of the page (uphill); thus
electrons flow in the direction indicated.
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the right. Typical values are V3p~0.2V whereas Vg~ 5-10V. The
performance of a transistor can be characterized by the current transfer
ratio o, which is defined as
Al
q=_°C
Al
Here we use A to indicate changes in current rather than steady state
currents that may result from any particular biasing arrangement. Clearly
o< 1, but for a good transistor « must be close to one.
To calculate the current gain of a transistor, we recall that the emitter
current is the sum of the collector and base currents.

(1.19)

Al =Al.+ Al (1.19)
The current gain f§ is defined by
B=Al./AlL (1.20)

Using this definition and that of Eq. (1.19) in Eq. (1.19") we obtain
1
—Al.= pAIg + Al = (1 + Al
o

or

_ o
T 1-u
For a typical value of « ~0.98 one finds ff ~49. Namely, we can use a
small current into the base of the transistor to control the flow of a much
larger current from the collector to the emitter. Thus a transistor is a
device that controls current flow.

The transistor is a three-terminal device and thus there are more biasing
possibilities than for a diode. There are three basic biasing configurations
which can be classified as: common or grounded base; common emitter;

B=a(l+B), B (1.20)

Fig. 1.15. Circuit symbol for a junction transistor; the current flow and
voltage definitions are indicated: (a) n—p-n, (b) p—n-p.

(a) n-pn



